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Introduction and Overview

An integrated agent architecture is a theory or paradigm by which one may design and

program intelligent agents. An intelligent agent is a collection of sensors, computers, and

effectors, structured in such a way that the sensors can measure conditions in the world,

the computers can process the sensor information, and the effectors can take action in the

world. Changes in the world realized by the effectors close the loop to the agent's sensors,

necessitating further sensing, computation, and action by the agent.

In recent years there has been a proliferation of proposals in the AI literature for inte-

grated agent architectures. Each architecture offers an approach to the general problem of

constructing an integrated agent. Unfortunately, the ways in which one architecture might

be considered better than another are not always clear.

There has been a growing realization that many of the positive and negative aspects of

an architecture become apparent only when experimental evaluation is performed and that

to progress as a discipline, we must develop rigorous experimental methods. In addition

to the intrinsic intellectual interest of experimentation, rigorous performance evaluation of

systems is also a crucial practical concern to our research sponsors. DARPA, NASA, and

AFOSR (among others) are all actively searching for better ways of experimentally evaluating

alternative approaches to building intelligent agents.

One tool for experimental evaluation involves testing systems on benchmark tasks in

order to assess their relative performance. As part of a joint DARPA- and NASA-funded

project, NASA-Ames and Teleos Research are carrying out a research effort to establish a set

of benchmark tasks and evaluation metrics by which the performance of agent architectures

may be determined. As part of this project, we held a workshop on Benchmarks and Metrics

at the NASA Ames Research Center on June 25, 1990. The objective of the workshop was to

foster early discussion on this important topic. We did not achieve a consensus of opinion,

nor did we expect to.

This report collects together in one place some of the information that was exchanged

at the workshop. This report includes an outline of the workshop, a list of the participants,

notes taken on the white-board during open discussions, position papers/notes from some

participants, and copies of slides used in the presentations.
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Workshop Outline

8:30 Coffee

9:00 Introduction

- General points.

- Domains and architectures of interest.

- Focus on characteristics of run-time system (e.g., response time) vs. characteris-

tics of development process (e.g., ease of development.)

- Focus on external characteristics of system (e.g., response time) vs. internal

characteristics which may be architecture-specific (e.g., number of subgoals gen-

erated.)

- How to (informally?) control for differences in underlying languages, compila-

tion/interpretation environments, and machines.

9:30 How to specify a "benchmark task"

- What counts as a "task"? As a "metric"?

- Tasks and metrics must be chosen together.

- To specify task, need:

• Environment description

• Description of inputs & outputs of agent

• Metric (Criteria for evaluating performance of agent)

- How should these be formulated (e.g., formal, informal, via simulators, etc.)

- Compare and contrast agent benchmarks with standard benchmarks in other

fields, e.g., processor benchmarks, compiler benchmarks, etc.

10:30 Break
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10:45 Three sample benchmark tasks/metrics and their attributes

- Presentation of strawman tasks in three domains:

• Tunable Benchmarks for Agent Evaluation (M. Pollack)

• Benchmarks and Metrics for Mobile Agents (R. Brooks)

• Requirements for Intelligent Monitoring Agents (B. Hayes-Roth)

- Discussion will center on significant problem attributes exhibited by each of the

strawman tasks (e.g., time stress, uncertainty, run-time goals) and on objective

metrics.

12:00 Lunch

1:00 Gap analysis

Discussion will focus on the degree of match/mismatch between the tasks and

metrics discussed in the morning and the specific tasks being used by workshop

participants to evaluate their own work.

The output will be a list of relevant task characteristics and a set of representative

task instances embodying these characteristics, and possibly, some strategies and

heuristics for generating and refining additional tasks and evaluation metrics.

3:15 Break

3:30 Standard robotic test platform

- Discussion of whether standard robotic platforms (e.g., mobile robots, vision ac-

celerators, etc.) should be made available to the research community and, if so,

what their characteristics should be.

- How might the design of such standard platforms be established?

- How might platform development be funded?

- Who manages the distribution of the platforms?

- Is standardization premature? Will it stifle creativity?

5:00 End

6:00 Dinner
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White-Board Lists

This section contains three sets of items related to the evaluation of intelligent agent archi-

tectures:

(1) tasks that could be used to test proposed architectures;

(2) key attributes of tasks, or dimensions along which tasks can vary; and,

(3) requirements for hardware that could serve as a common experimental platform.

Lists (1) and (3) were generated by workshop participants in brainstorming sessions

during the course of the workshop; list (2) was synthesized by the authors immediately after

the workshop from ideas inspired by general discussion. In the spirit of the workshop, these

lists are intended to be suggestive rather than comprehensive.

Possible Tasks

• Indoor robotic navigation and delivery.

• Outdoor survey and collection.

• Automated indoor tour guide.

• Multiple coordinated robots (with and without explicit communication).

• Satellite servicing (ORU replacement with verification).

• Find and assemble: definitions and instructions at runtime.

• Assemble, diagnose and repair electromechanical devices.

• Outdoor robots - real-time terrain reasoning.

• Cleaning and deburring machined parts.

• Space station assemply, maintenance, refueling.

• Process scheduling.

• Space shuttle refurbishment - scheduling, planning, diagnosis, repair.

• Cleaning teenager's room.

• Nurse's associate.



• Building construction.

• Data analysis planning (Earth Observing System).

• SIMNET player (robotic).

• Traffic world.

• Aircraft emergency procedures.

• Planning a tour in dynamic environment.

• Vehicle Driving.

• Rendezvous docking operations.

• Road grading.

• Beacon emplacement (to define landing areas).

• Structure protection (against external influences).

• Aerobrake assembly.

• Toxic waste handling and disposal.

• Ventilator management.

Possible Task Attributes

Resource Management. Does the task have properties pertaining to metric time and

continuous quantities? If so, the problem may take on the character of a classical

optimization problem.

Geometric and Temporal Reasoning. Does the task involve extensive geometry or rea-

soning about activities over time? These kinds of reasoning may require specialized

representations.

Deadlines. Does the task impose absolute deadlines for goal satisfaction, or does the utility

of goal satisfaction vary continuously with time?

Opportunity for Learning. Is the task specification complete at the beginning of the

agent's execution? If not, the agent must be able to acquire knowledge about its
environment.



Multiple Agency. Does the task require the definition of a community of interacting

agents? Such tasks might require complex communication protocols or reasoning about

the internal states of other agents.

Informability. Can the agent be presented with explicit goals and facts about the world

during tile course of its execution?

Dynamic Environment. Does the agent's world change over time independent of the ac-

tions the agent takes? How predictable are the dynamics of the world?

Amount of Knowledge. How much a priori knowledge is available to be used by the

agent? Some domains, such as medical diagnosis, require the assimilation of a large

amount of domain knowledge.

Reliability of Sensors and Effectors. In some task domains, sensors and effectors are

completely reliable; in others, the main difficulty lies in accurately integrating data from

a number of highly unreliable sensors and achieving robust overall behavior through

the use of unreliable effectors.

Requirements for a Common Hardware Platform

• Manipulator.

• High speed data and control link.

• Easy to control from various machines.

• Payload capability.

• Modularity.

• Comes with a simulator.

• Standard bus card cage.

• Hierarchical sensor & effector software (felexible software library).

• Reliability.

• On-Platform debugging facility.

• Safety.

• Turnkey functionality.

• Affordable.
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Position Papers and Notes

Some workshop participants contributed written position papers, and others provided short

working notes. The following pages reproduce these papers and notes, with the authors'

collective permission.

It is important to understand the status of the following material. The Ames meeting

on June 25 was intended to be a bona fide workshop, and participants were encouraged to

submit written (but preliminary!) accounts of ideas, issues, and concerns. To try to capture

the spirit of the workshop, we have included some of this material in the following pages.

Thus, these notes should not be read as a proceedings of the workshop, but rather, as a

workshop "snapshot".

Please note that some authors have since expanded upon their workshop contributions.

In particular, Paul Cohen has written a paper entitled "A Survey of the Eighth National

Conference on Artificial Intelligence: Pulling Together or Pulling Apart" (AI Magazine,

Spring 1991). Pat Langley, Leslie Kaelbling, and Mark Drummond have also written about

related issues, and their papers can be found in the Proceedings of the DARPA workshop

oil innovative approaches to planning, scheduling and control, held in San Diego, CA, from

November 5th through the 8th, 1990. The Proceedings are available from Morgan-Kaufmann,

Sall Mateo, CA.

Authors and Titles

Jaime Carbonell, Tom Mitchell, & Allen Newell

The Diversity Metric for Intelligent Systems

David Chapman

On Choosing Domains for Agents

Paul Cohen & Adele Howe

Benchmarks Are Not Enough

Evaluation Metrics Depend on the Hypothesis

David Hart & Paul Cohen

Phoenix: A Testbed for Shared Planning Research

John Laird

Characteristics of Tasks for InteUigent Agent Benchmarks

Pat Langley

The Experimental Study of Intelligent Agents

Paul Rosenbloom

Informal Notes on the Nature of an Architecture
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THE DIVERSITY METRIC FOR INTELLIGENT SYSTEMS

Proposed at the Benchmark and Metric Workshop, NASA Ames, 25 Jun 90

Revision #1, 18 Jul 90

Jaime Carbonell, Tom Mitchell, Allen Newell

School of Computer Science, Carnegie Mellon University

Preface: The forte of intelligent systems is the ability to deal with a broad diversity of tasks. We seek a measure of

this ability to handle diversity.

Proposal:
A combo is a system with a developer, where:

The system is the system to be measured.
The developer is a human with the expert skills and knowledge to operate, command, guide, instruct,
reprogram and develop the system (hereafter, modify the system).

A task domain (D) is a set of tasks, where:
Task accomplishment can be specified to some competency level (CL).
The domain can be described coherently to a developer.

The completion time (T) of a combo for a task from domain D is the time required by the combo to achieve
the competence level specified for the task, where:

There can be prior knowledge of the domain D.
There is no prior knowledge of the task and CL before the clock starts.
The developer can modify the system at will.
The clock stops when the system performs the task by itself.

The diversity of a system for a domain D is the set of tasks in D for which completion times are acceptable,
where:

Acceptability is a parameter set to reflect the context of use in which the tasks occur.

Intelligent systems are to be evaluated in terms of the diversity they can achieve.

Notes:

1. The key idea is to permit development and modification, but to include this time in the measure of the
system's effectiveness.

2. Modification time should not be separated from system-performance time, because the system's
capabilities for flexibility may help as much in modification as in performance.

3. The system external interfaces (natural language, robotic, formal specification languages) play a
critical role in the speed of its modification and the domains it can attempt. They are not fixed as part

of the task specification, because the combo may modify them.

4. This metric assigns the full time cost of modification to a single performance, which is appropriate for
many domains but not all; modification could be amortized over several performances.

5. Intelligent systems will be competitive for domains whose tasks pose significant requirements for
assimilation, learning, adaptation and modification; specialized systems will be competitive for
domains whose tasks are stable with prespecified variability.

6. The combo situatic_n permits assessment before a system's adaptive capability is advanced enough to
focus exclusively on measuring autonomous behavior.

7. The diversity metric is equally applicable to reuseability, maintainability and adaptability in software-
engineering.

8. Interesting domains include: acquiring a new task domain, acquiring a major new functional
capability, incrementing functionality, coping with a new environmental feature, accepting a new
communication convention, exploiting a relaxation of time pressure, etc.



On choosing domains for agents

David Chapman

Teleos Research

576 Middlefield Road

Palo Alto, CA 94301

(415)328-SS79

Position paper prepared for the

Workshop on Benchmarks and Metrics

NASA Ames, June 25, 1990.

Abstract

Much recent work has addressed the problems of uncertain, real-time domains. This paper

argues that these negative characterizations of domains are inadequate: they make an already

difficult problem harder. Focussing on these characteristics leads one into intractable search

problems and unrealistic noise models. We need rather to focus on the positive attributes

of domains that make action possible. I analyze the success of Sonja and Pengi in these

terms. I propose that research should seek new facilitating features and architectures that

can exploit them.

This research was supported by the Air Force Office of Scientific Research under contract F49620-

89-C-0055. Copyright @ David Chapman 1990. All rights reserved.
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1 Negative characterizations of domains

In our original paper on Pengi [1], Phil Agre and I characterized interesting domains as

complex, uncertain, and real time and described Pengi's domain Pengo as one such. We

focussed on these attributes of the domain to make the point that available theories of

activity (based on planning) were unable to deal with important characteristics of real-world

tasks.

In the past few years, uncertainty and real-time response have become central issues for

theories of activity. (Complexity' has been less studied; I'll come back to this.) This paper

argues that while it is indeed important that real-world domains have these characteristics,

focussing on them in isolation is a mistake.

1.1 Combinatorics

Planning problems are hard because of combinatorics. Adding uncertainty makes them much

worse.

If all you know about a domain is that it is uncertain and real-time, all you can do is

brute-force search. There's nothing grab onto to work with, no constraint to exploit. The

search problems that come up in planning are unpleasantly intractable. What's worse, they

aren't interesting. Without additional imposed structure, "planning is just computation"

[2]; we can't expect to do anything clever.

Few researchers have tried to address the issue of domain complexity,. The reason, I think,

is that complexity is the feature that makes search infeasible. As long as activity research

continues to focus on search-based teclmiques, the complexity' of real domains must continue

to be ignored.

Toy domains are, I believe, too hard because they are too simple. Complexity is a problem

for search-based techniques, but it can be a resource for others. Simplifying a domain removes

all the useful structure. (More about this later.)

The combinatorics of planning are the combinatorics of the problem, not of the solution.

In other words, nontraditional solutions to the traditional planning problem can't work

either. Since creatures do act sensibly in the real world, it must be that the problem is

wrong, and too hard. It's wrong because it's too general. Neither people nor computers can

act effectively in arbitrary uncertain, real-time domains.

1.2 Uncertainty, noise, randomness, and emergent structure

It's common these days to work in simulated domains in which certain aspects are subject to

deliberately introduced pseudorandom variation. This is intended to model the observation
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that real-world domainsoften vary unpredictably.

I believe that deliberately introducing simple forms of randomnessis misleading and
results in qualitatively different agent/world dynamicsthan the sorts of uncertainty that are
prevalent in the real world.

Although the real world may contain somegenuinerandomnessdue to quantum noise,
this is not the major sourceof uncertainty in the macroscopicdomains. Uncertainty instead
derivesfrom lack of knowledge.The world is much too complex to represent all of it, even if

you could find out about all of it, and too complex to simulate even if you could represent

it. The world looks much more random, when viewed through the perspective of any one

agent, than it actually is.

Why does this matter? It matters because beneath the apparent randomness of any

particular real-world task there lies a great deal of structure which sensible agents rely on.

The "noise" in real domains is not distributed uniformly, but in complex patterns which

can- and must--be exploited to get useful work done. This exploitation may come from a

bottom-up learning process or by explicit design by a theorist who also has observed and

figured out how to make use of patterns whose causes are obscure.

By contrast, the noise that is added to simulated worlds is typically distributed uniformly

or in some other simple way. This is because uncertainty is seen as a difficulty to be overcome,

rather than a resource to exploit. If randomness is just an obstruction, it doesn't matter if

it's just uniform. And indeed no use one can make of uniformly distributed noise; all you can

do is work around it. All it does is make a bad scheduling problem worse. But if structured

variation is a crucial resource for effective action, artificial noise results in an impoverished,

unrealistically difficult world.

2 Positive characterizations of domains

In addition to explaining what makes the real world hard to act in, we need to say why it

is possible. That is, we need positive characterizations of domains as well as negative ones.

How can we choose facilitating characteristics in a principled way? I'll begin to answer this

question by looking at some characteristics that successful existing systems exploit.

2.1 Why Sonja and Pengi work

Sonja [4] and Pengi [1] operate effectively in complex, uncertain, real-time domains (Amazon

and Pengo). What features of these domains do they exploit?

It is impossible to answer this question definitely without extensive cross-domain research.

I have some ideas, though. Sonja and Pengi work by means of visual routines that analyze

the spatial configurations of tile domain objects to extract task-relevant properties. For
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example,Sonjalooks to seewhether it hasa clearshot at a monster. What domain features
enablesuchroutines?

In thesedomains, the effectsof the agent's actions and of other processesare both
spatially constrained. Amazons,ghosts,and fireballs moveslowly enough that they
traverseonly small distancesover the cycle time of the agent.

• Most of what is in anysituation is irrelevant to any giventask. Although any icecube
may becomeimportant at somepoint in a Pengogame,all but a few areuninteresting
at any giventime.

• Moreover, it is possible to find the relevant objects easily. This property along with
the former two makeit possibleto avoid representingmost of the domain, and thereby
to avoid the combinatoricsthat the domain's complexity would otherwise engender.
Finding relevantobjects dependson other properties:

- It is possibleto perceiveahnosteverythingrelevantwith minimal effort. Sonjaand
Pengi have visual bandwidth limitations which model human visual bandwidth
limitations, and theseprevent the systemsfrom looking at more than a tiny
fraction of the visually presentedsceneat once. Moreover, in Amazon (but not
Pengo)most domain objects are occludedat any given time. Nonetheless,it is
usually possible in both domains to usevisual searchroutines to find the most
important objects in a situation quickly relative to the paceof the game.

- Interesting objects are conspicuous(in terms of availableperceptual primitives).
For example,they may bemoving, whereasuninteresting objects are mostly sta-
tionary; or they may distinctively colored,or distinctively placed in relationship
to other interesting objects.

• Visually identifiable properties of objects strongly constrain their fllture behavior.
Thus it is possibleto reasonabout the future by meansof geometrical computations
(efficiently implementedin the visual system) rather than by deduction from frame
axioms.

2.2 Future directions

The positive properties I enumerated in the last section are not true of every domain. How-

ever, they are mostly true of many domains most of the time. This makes them reasonable

properties for an architecture to depend on.

More generally, interesting positive properties should not be domain-specific, or we will

only learn about one domain. On the other hand, we should not expect to find positive
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properties that hold of every domain of interest. Rather, we should enumerate many prop-

erties that are often true, and design architectures that can flexibly exploit those that are

available and that degrade gracefully as facilitating features are removed.

There are several positive properties of domains that I suspect are true of most domains

of interest, that I think important to human performance, and that I think we ought to

investigate further.

In many or most domains, activity is inextricably intertwined with perception. The

sort of input an "action component" gets may be crucial to determining its architecture.

Artificial domains that abstract away from perception may lead us down blind alleys.

As I have argued elsewhere [3], I believe that the "simplification" of studying activity

in isolation fl'om perception makes the problem harder, not easier. The extraordinary

richness of perception makes action easy.

Real domains typically are regular or routine in the sense that a tiny subset of the

logically or physically possible sorts of courses of events actually transpire. These

regularities arise fl'om complex interactions between domain processes. These processes

and their interactions are typically unknown to agents acting in the domain, but in

many cases are key to effective performance. How do agents come to exploit structure

whose causes they don't understand?

Typically people learn new tasks by trying the easy cases first. We need to understand

how an agent can select its own training sequence and what properties of a domain

make that easy. For example, a domain may make it perceptually simple to determine

how difficult a problem instance is. A domain also has to make it possible for an agent

to ignore or finesse the hard cases at first.

Typically people learn new tasks by legitimate peripheral participation [5], i. e. by

performing the task first as an assistant and gradually taking over more and more re-

sponsibility. What sorts of domains and tasks make legitimate peripheral participation

possible, and how does this participation enable an agent to gradually take on more

responsibility?

3 Summary

Characterizing domains in solely negative terms leads to intractable and unrealistic

pseudoproblems.

We should, instead, look for the facilitating domain characteristics that make effective

action possible.

Such characteristics should not be domain-specific, but may also not hold of all domains
all the time.
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• Accordingly, no singledomain can serveas an accuratebenchmark. An architecture
shouldbe evaluatedaccordingto its versatility. We needa suite of benchmarkswhich
arechosento exhibit a rangeboth of difficulties and resources.

• Domain complexity hasbeenneglectedas a sourceboth of difficulty and opportunity.
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Benchmarks Are Not Enough
Evaluation Metrics Depend on the Hypothesis

Paul R. Cohen and Adele E. Howe

Experimental Knowledge Systems Laboratory

Lederle Graduate Research Center

Department of Computer and Information Science

University of Massachusetts, Amherst

cohen@cs.umass.edu

howe(_ c s .umass. edu

June 1990

A couple of weeks ago we got an invitation: "to participate in the Benchmarks and Met-

rics Workshop (BMW), a one-day working meeting on evaluating agent architectures. The

purpose of the meeting is to generate ideas on possible benchmark problems and evaluation

metrics." Unable to attend, we console ourselves by writing this.

Our concern is that evaluation has become synonymous with performance evaluation.

This leads to what John McCarthy is reputed to have called "took Ma, no hands" demon-

strations. Benchmarks are a small step forward: they standardize what is being demon-

strated, but they also perpetuate the view that evaluation is no more than demonstration of

performance.

When we build AI systems as demonstrations, guided by benchmarks, we tend to aim for

tile benchmark and eliminate behaviors that, in the light of the benchmarks, we interpret as

"bugs." As autonomous agents become more interesting, this style of research turns a blind

(or prejudiced) eye to phenomena that lead to novel hypotheses. We end up building AI

systems that do what they are expected to do. The literature is full of papers that assert,

"\Ve need X, here's how we expect to provide X, and (later) here's a demonstration of X."

Lenat and Feigenbaum put it this way:

"If one builds programs that cannot possibly surprise him/her, then one is

using the computer either (a) as an engineering workhorse, or (b) as a fancy

sort of word processor (to help articulate one's hypothesis), or, at worst, (c) as a

(self-) deceptive device masquerading as an experiment .... The most profitable

way to investigate AI is to embody our hypotheses in programs, and gather data

by running the programs .... Progress depends on the experiments being able to

falsify, our hypotheses."
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Hypothesesarealreadyvery rare in AI. Thegeneralform of ahypothesisis "X is sufficient
to produceY." But unlike hypothetico-deductivescience,werarely showthe necessityof one
hypothesisvisa vis mutually exclusivealternatives. Our principal modeis to acceptthe null
hypothesis: to accruedemonstrations.It is difficult to seehow instituting benchmarks--with
their emphasison demonstrating performance--will changethis methodologicalstance.

Let us accept that AI researchshould be driven not by benchmarksbut by hypotheses
about why AI systemsbehaveasthey do in particular environments.What doesthis imply
about evaluation metrics? There are two kinds of metrics: measuresof performance,and
measuresof those factors we hypothesizeare causally responsiblefor levelsof performance
(often called dependentand independentmeasures,respectively). Experiments test these
causal hypotheses. In the discussionsat this workshop, it seemsessential to focus on a
methodology to get at thesecausalhypotheses--on dependentand independentmeasures,
both. Benchmarksmight be designed to anticipate causal hypotheses, but failing that, they

certainly should not be accepted in lieu of hypotheses.
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Annual Workshop on Case-based Reasoning, Pensacola Beach, FL. May 30-June 2, 1989.

pp. 168--172.

Lenat, D. and Feigenbaum, E.A., On the thresholds of knowledge. Proceedings of IJCAI

10. pp. 1173-1182.

19



Phoenix: A Testbed for Shared Planning Research 

David M. Hart and Paul R. Cohen

Experimental Knowledge Systems Laboratory

Computer and Information Science

University of Massachusetts

Amherst, MA 01003

dhart@cs.umass.edu

cohen@cs.umass.edu

June 1990

Abstract

We describe an instrumented simulation testbed called Phoenix that we have de-

veloped for a complex, dynamic environment--forest fire-fighting. Phoenix has many

built-in features to support the evaluation of autonomous planning agents. Thus, the

Phoenix testbed bears consideration as a paradigmatic environment for current plan-

ning research.

_This research has been supported by DARPA/AFOSR contract #F49620-89-C-00113; the Office of Naval

Research, under a University Research Initiative grant, ONR N00014-86- K-0764; the Air Force Office of

Scientific Research contract #49620-89-C-0121; and ONR contract #N00014-88-K-004.
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1 Introduction

\Ve have seen a revival in planning research in the last few years as attention has turned

to AI systems that operate in complex, dynamic environments. A burgeoning number of

task domains and a variety of new and old planning approaches are being explored. Several

questions arise from such diversity: how do we evaluate this work? can we compare one

approach to another? what characteristics do we require in a task environment, and which

environments have those characteristics? In this note we describe an instrumented simulation

testbed called Phoenix that bears consideration as one of a set of paradigmatic problems in

current planning research.

Several years ago we chose a task domain that has many of the characteristics we associate

with complex, dynamic environments--forest fire-fighting. Our goal has been to design

autonomous agents for this environment. Our methodology requires empirical analysis of

the environment and of the behaviors of the agents we design. To support this analysis, we

built the Phoenix testbed [1] and a variety of tools for development and experimentation.
Sections 2 and 3 describe the Phoenix task domain and the characteristics that make it

paradigmatic. Section 4 describes the features of the testbed that support development and

evaluation. Section 5 shows the layered modularity of the system and how other researchers

could use part or all of it to test their own approaches to planning. Section 6 gives a partial

list of current and potential areas of research in Phoenix to illustrate the richness of this

task domain.

2 The Task Domain: Controlling Simulated Forest

Fires

The Phoenix task is to control simulated forest fires by deploying simulated bulldozers,

helicopters, fuel carriers, and other objects. The Phoenix environment sinmlates fires in

Yellowstone National Park, for which we have constructed a representation from Defense

Mapping Agency data. As the simulation runs, the user views fires spreading and agents

moving through a topographical map of the park that shows elevations, ground cover, static

features such as roads and rivers, and dynamic features such as fireline.

Fires spread in irregular shapes, at variable rates, determined by ground cover, elevation,

moisture content, wind speed and direction, and natural boundaries. For example, fires

spread more quickly in brush than in mature forest, are pushed in the direction of the wind

and uphill, burn dry fuel more readily, and so on. These conditions also determine the

probability that the fire will jump fireline and natural boundaries.

Fires are fought by removing one or more of the things that keep them burning: fuel,

heat, and air. Cutting fireline removes fuel. Dropping water and flame retardant removes

heat and air, respectively. In major forest fires, controlled backfires are set to burn areas in
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the path of wildfires and thus denythem fuel. Huge "project" fires,like thosein Yellowstone
severalyearsago, are managedby many geographicallydispersedfirebossesand hundreds
of firefighters. The current Phoenix planner is a bit more modest. One firebossdirects a
number of bulldozersto cut line near the fire boundary under moderate conditions, or at
somedistancefrom the fire when it is spreadingquickly.

3 Characteristics of the Fire-fighting Domain

Several characteristics of this environme,at constrain the design of agents, and the behaviors

agents :::::st display to succeed at their tasks. The fire environment is dynamic because

everything changes: wind speed and direction, humidity, fuel type, the size and intensity

of the fire, the availability and position of fire-fighting objects, the quantity and quality of

information about the fire, and so on. The environment is ongoing in the sense that there

isn't a single, well-defined problem to be solved, after which the system quits; but, rather,

a continuous flow of problems, most of which were unanticipated. The environment is real-

time in tile sense that the fire "sets the pace" to which the agent must adapt. The agent's

actions, including thinking, take time, and during that time, the environment is changing.

Additionally, agents must be able to perceive changes in the environment, either directly

through their own senses or indirectly through communication with other agents.

The environment is unpredictable because fires may erupt at any time and any place,

because weather conditions can change abruptly, and because agents may encounter unex-

pected terrain, or fire, or other agents as they carry out plans. An agent must respond to

unexpected outcomes of its own actions (including the actions taking more or less time than

expected) and to changes in tile state of the world.

The fact that events happen at different scales in the Phoenix environment has profound

consequences for agent design. Temporal scales range from seconds to days, spatial scales

from meters to kilometers. Agents' planning activities also take place at disparate scales; for

example, a bulldozer agent must react quickly enough to follow a road without straying due

to momentary inattention, and must also plan several hours of fire- fighting activity, and

must do both within the time constraints imposed by the environment. (Notably, Phoenix

agents are hybrid reactive/deliberative planners.)

The Phoenix environment is spatially distributed, and individual agents have only lim-

ited, local knowledge of the environment. Moreover, most fires are too big for a single agent

to control. These constraints dictate multi-agent, distributed solutions to planning problems.
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4 The Phoenix Testbed

The Phoenix testbed simulates the forest fire environment. It uses map structures to repre-

sent the forest, and a discrete event simulator to coordinate tasks that effect spreading fires,

changes in the weather, and the actions of agents. The agents we design interact with this

simulated world through a prescribed interface for sensors and effectors. Agent design and

planning research are done in layers of the system built on top of the testbed (see Section

5).

The advantages of simulated environments are that they can be instrumented and con-

trolled, and provide variety-all essential characteristics for experimental research. The

Phoenix testbed has many features that facilitate experiments. It provides development

tools for implement.ors, instrumentation for evaluation and analysis, baselines and baseline

scenarios for benchmarking, and an interface for managing large experiments.

4.1 Development tools

The testbed includes tools to help developers implement and debug fire-fighting agents. The

graphic interface (the map of the park) is highly interactive, allowing the user to zoom in and

out at different resolutions, watch agents' movements and fire-fighting activities, determine

static and dynamic features at any point in the map, and "see" the view of each individual

agent (each agent's knowledge about dynamic features in the environment, is determined

by what it has per_'eived directly and what has been communicated from other agents). A

desktop interface allows the user to interrogate each agent's memory structures, which are

built from a generic frame system. A grapher and frame-editor allow the user to browse

through memory structures and alter values for debugging.

4.2 Instrumentation

Phoenix is instrumented at three levels: the implementation level of system performance, the

solution level of planning and agent designs, and the domain level of fire-fighting. Examples

follow:

The implementation level includes metering to measure run time, cpu time , disk wait

time, time since last run , idle time, and utilization, each graphed against time; as well as

an interface to the Explorer performance metering that gives, for each function, the number

of calls , average run time, total run time, real time, memory allocation, page faults, and so

Oil,.

The solution level is characterized by statistics on cpu utilization by the cognitive com-

ponent of each agent, showing the profile of real-time response; for example, the latency

between when actions on the timeline become available for execution and when they are
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executed. Other metering providesmetrics on sensorand effector usage,and on reflexes.

The domain levelmeasuresperformancein domain terms; for example, the amount and
type of forest burned, the number of housesburned, and the number of agentsthat perish.
Resourceallocation is currently measuredby the amount and type of agentsemployedto
fight the fire, gasolineconsmned,fireline cut, distancetraveled,and time requiredto contain
the fire.

4.3 Baselines and baseline scenarios

We have developed baseline scenarios for several situations that are both characteristic of

this domain and require timely response to environmental changes. As an example, one

scenario involves a single fire whose profile changes dramatically due to an increase in wind

speed and a change in wind direction, so that the nature of the threat changes from the

potential loss of forest to loss of populated areas. Another scenario presents the problem

solver with multiple fires and limited fire-fighting resources which must be managed efficiently

to prevent one or more fires from spreading out of control. By limiting the number of fire-

fighting agents available, and limiting the amount of fuel each can carry (requiring them to

refuel periodically), this scenario forces the problem solver to allocate its resources wisely in
order to control all the fires.

We are collecting a wide range of baseline data about the simulation environment that we

will use to build our agents' planning knowledge- bases. This includes data about fire spread

rates, agent movement, reaction and thinking time in agents, and effectiveness of fire-fighting

strategies. Baseline data are also used to evaluate the performance of our agents.

A scripting capability allows the user to create and store scenarios. Scripts give control

over environmental factors such as when and where fires start, wind characteristics, and

the resources available for fire- fighting (how many agents of each type, what are their

speeds, fuel capacities, fields of view). The timing of environmental changes is specified in

scripts, allowing the user to control when events occur in the simulation for testing purposes.

histrumentation functions can be run within scripts.

4.4 Experimental interface

Scripts are part of a suite of data collection and analysis programs, which also includes

facilities for manipulating data, a statistical package, and a graphing package. With these

tools we have designed, executed, and analyzed the data from several large experiments

involving -to date---over two thousand fire-fighting episodes.
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5 Phoenix System Components

Phoenix runs on TI Explorers (color or B&W) and MicroExplorers, and is packaged into one

system that includes all non-standard (non-proprietary) support code we use to run it. Part

or all of tile system can be provided to other laboratories and research groups on tape as a

TI Load Band along with supporting documentation for the testbed, on-line help facilities,

and annotated Lisp source code.

Tile Phoenix system comprises five levels of software:

.
DES -- the discrete event simulator kernel. This handles the low-level scheduling of

agent and environment processes. Agent processes include sensors, effectors, reflexes,

and a variety of cognitive actions. Environment processes include fire, wind, and

weather. Tile DES provides an illusion of simultaneity for multiple agents and multiple

fires.

2. Map .... this level contains the data structures that represent the current state of the

world as perceived by agents, as well as "the world as it really is." Color graphics

representations of the world are generated from these data structures.

3. Basic agent architecture-- a "skeleton" architecture from which agents, such as bull-

dozers, helicopters, and firebosses are created. The agent architecture provides for

sensors, effectors, reflexes, and a variety of styles of planning.

4. Phoenix agents-- the agents we have designed (land are designing) for our own exper-

iments.

. Phoenix organization--currently we have a hierarchical organization of Phoenix agents,

in which one fireboss directs (but does not. control) multiple agents. Each Phoenix

agent is autonomous and interprets the fireboss's directions in its local context, while

the fireboss maintains a global view.

Phoenix is modularized so that other researchers can work with all or part of it. The first

two levels, above, comprise the fire sinmlation testbed; researchers interested in designing

and implementing their own agent architectures could experiment with them in this testbed.

The next level is a generic agent architecture shell-a set of functional components common

to all agents. Code to interface these components with the testbed is included with this

level, so that researchers interested in working with our functional decomposition of agent

capabilities need only instantiate the shells for components (sensors, effectors, reflexes, and

cognitive capabilities) with their own designs. The fourth level includes our designs of

these components, providing a specific agent architecture that is distinctive primarily for the

plaIming style used in the cognitive component (skeletal planning with delayed commitment

to specific actions). Researchers interested in using our planning style and agent architecture
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could work with the first four levels, creating their own agent types and organizing them
accordingto their researchinterests. The fifth level is the organizationof fire fighting agents.
Researchersinterestedin working with our solution to problem solving in this domaincouhl
useall five levels to replicate and/or extend our work

6 Research Issues in Phoenix

Tile Phoenix environment presents a rich variety of research issues. We are just scratching

the surface with tile ones we've tackled, which include: modeling the environment and

agent architecture [3], building adaptive capabilities into the planner based on error recovery

[6,7], sophisticated monitoring and control of plan execution [4], and real-time problem-

solving [2,5]. Future areas of research we have identified are resource management, situation

assessment, different protocols for the integration of reactive and deliberative control, and

different types of learning.

7 Conclusion

Phoenix is an instrumented testbed that simulates a complex, dynamic environment. The

task domain, forest fire-fighting, has many of the characteristics that define these environ-

merits. The testbed has many features designed to support empirical analysis, and is mod-

ularized for use by other researchers. This environment presents a variety of open research

questions.
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1 Introduction

Tile purpose of this document is to lay out the space of task characteristics that should be

covered by a suite of benchmark tasks for an intelligent agent. We assume that a task can be

characterized by a task environment (such as a room with blocks), a set of goals (stack the

blocks in the corner), and an agent consisting of a perceptual system (transducer of energy

in the environment into information, such as a camera), a motor system (a transducer

of information into energy/action in the environment, such as an arm), and a cognitive

system (processor of information). The task environment may be real or simulated, with

corresponding real or simulated perceptual and motor systems for the agent.

A benchmark would consist of a specification of task environment and possible constraints

on the other components. For example, a benchmark might be just a task environment and a

set of goals, where all of the other components arc free variables that are under control of the

system designer. Another possibility is that the benchmark would be the task environment,

the goals, plus predefined perceptual and motor systems (such as those provided by a specific

mobile robot). There could even be constraints on the cognitive system, such as that it must

fit in a certain amount of memory or use only a prespecified set of domain knowledge.
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2

3

Characteristics of the Environment

1. Dynamics of the environment

(a) changes over time, independent of the agent

(b) different external processes have different dynamics

(c) synchronous vs. asynchronous with agent

(d) predictable vs. unpredictable

2. Interaction between the environment and the agent

(a) hinder vs. help the agent's goal achievement

(b) recoverable vs. unrecoverable failures

(c) tools can change interaction between agent environment

i. provide transduction of environment to agent or vice versa.

ii. can improve perceptual sensitivity, accuracy, precision, etc.

iii. can improve action effectiveness, accuracy, precision, etc.

(d) other agents may be in environment

i. hinder agent goal achievement

ii. help agent goal achievement

iii. hav_: own goals that are consistent or inconsistent with the agent

Characteristics of the Agent's

1. multiple goals

2. interacting goals

3. concurrent goals

4. time dependent goals

5. one-shot vs. continuous vs. cyclic goals

6. hard vs. soft constraints on goal achievement

7. internal vs. external sources for goals

Goals
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4

5

Characteristics of Perceptual System

1. sensitivity of sensor

(which forms and ranges of energy)

2. completeness of sensor

3. amount of data from sensor

4. speed of sensor

(timeliness of data)

5. precision of sensor

6. accuracy of sensor

7. active vs. passive sensor

8. fixed vs. manipulable sensor

Characteristics of Motor System

1. impact on environment

(how effector changes environment)

2. physical range of effectors

(no action at a distance)

3. degrees of freedom of effectors

4. concurrency of action

(sequential vs. parallel action)

5. dynamics of effector

(speed of action)

6. predictability of action

7. precision of action

8. accuracy of action

9. feedback of effect of action
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6 Characteristics of Cognition

1. speed of processing

2. online vs. ofi]ine processing

3. memory limitations

4. access times for different memory structures

5. initial knowledge

6. correctness of initial knowledge

7. types of knowledge (episodic, procedural, semantic)

8. indirect sources of knowledge about environment

(trainer, map, encyclopedia, data base)

9. ability to improve knowledge through experience

10. autonomy

(can not be restarted by an external agent)
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To evaluate any method or system, one needs some measure(s) of its behavior. In most

experiments, these will be tile dependent variables. One obvious measure concerns the quality

of the agent's behavior, such as the length of solution path or the total energy expended.

In some cases, the agent may be unable to accomplish a task or solve a problem, and one

can also measure the percentage of solved problems. A third class of dependent variables

involves the amount of time or effort spent in generating a plan or behavior (though in

resource-limited situations, this may also be controlled).

EvMuation also acknowledges that there are different approaches to the same problem,

and this constitutes a major independent variable in experimental studies. One can run

diff,,rent methods or systems on the same task and measure their relative behavior along one

or lllore dependent dimensions. The goal here is not to hold a competition but to increase

understanding. Nor need one compare entire systems against each other; one can also lesion

specific components or vary parameters to determine their effects on behavior.

Seldom will one system always appear superior to another, and this leads naturally to the

idea of identifying the conditions under which one approach performs better than another.

Real-world problems may have practical import, but they provide little aid in factoring out

the causes of performance differences. To accomplish this, one often needs artificial domains

in which one can systematically vary domain characteristics. In tasks that involve planning

and execution, some important characteristics include the complexity of the problem (e.g.,

the number of obstacles and length of the path in navigation tasks), the reliability of the

domain (e.g., the probability that the agent's effectors will have the desired effect), and the

rate of environmental change not due to the agent's actions. One can also view resource

limitations (e.g., time or energy) as independent variables that affect task difficulty.

Different goals are appropriate for different stages of a developing experimental science.

In the beginning, one might be satisfied with qualitative regularities that show one method as

better than another under certain conditions, or that show one environmental factor as more

devastating to a certain algorithm than another. Later, one would hope for experimental

studies to suggest quantitative relations that can actually predict performance on unobserved

situations. This should lead ultimately to theoretical analyses that explain such effects at a

deeper level, preferably using average-case methods rather than worst-case assumptions.

However, even the earliest qualitative stages of an empirical science can strongly influence

the direction of research, identifying promising methods and revealing important roadblocks.

Research on planning and intelligent agents is just entering that first stage, but I believe

the field will progress rapidly once it has started along the path of careful experimental
evaluation.
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Infornlal Notes on the Nature of an Architecture
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1. It can bc very difficult to come up with a firm evaluation of a.n architecture along par-

titular dimensions. Occasionaly you find clear-cut cases where an architecture achieves

optimal performance without requiring anything to be added or modified (either to tile

architecture itself, or on top of it [such as new knowledge]), or where an architecture

is fundamentally incapable of exhibiting a certain form of behavior. However, most

of the architectures are flexible enough to do just about anything if you put enough

ingenuity into how it is used (this is the "Turing tarpit" problem). In such systems

tile tough quest.ions come up in the large grey area. between the two extremes. This is

where questions like the following arise:

• To what extent is tile architecture implicated in the capability?

• Does it provide the entire capability?

• Does it provide support that could not be provided any other way?

• Does it constrain how the capability is manifested?

• Does tile architecture say nothing about the capability?

• Must an interpreter be built on top of the architecture in order to effectively

provide the capability?

• To what extent is the capability general across application domains?

• To what extent does the capability integrate with the other requisite capabilities?

• How much (and what type of) "user" effort is required to get. the system to exhibit

the capability?

Without answering such questions, data about which architectures can perform which

benchmark tasks at what levels of performance are impossible to interpret. Even

once you've answered these questions, there is still the question as to whether it is

"appropriate" for the caI)ability to be exhibited as it is - for example, certain types of

behavior probably should be performed interpretively. We've written a paper in which

we tried to provide preliminary answers to some of these questions for Soar, but it

definitely isn't easy.
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2. Ideally the set of benchmarksshouldnot overstressany oneparticular capability over
and abovethe others. What's neededis a setof benchmarkswhichstressdifferent com-
binations (and numbers)of the basiccapabilities. Of course,the real situation is even
morecomplexthat this, because"individual" capabilities- suchaslearning- really are
a wholesetof related,but distinct, capabilities. It isdifficult (impossible?)to construct
a set of benchmarksthat doesn't bias the evaluation towards somespecificcapabili-
ties, or evenspecificvariationsof the individual capabilities (suchasexplanation-based
learning versusinduction). If a levelplaying field cannot be achieved,there needsto
be a discussionup front about the biasesthat leadit to slopein onedirection or other.

34



Slides from the Presentations

We felt that presentations on specific tasks and metrics would help focus the discussion, so

we invited three people well known for their research and experience with system evalua-

tion: Martha Pollack, Rod Brooks, and Barbara Hayes-Roth. Dr. Pollack was expected to

discuss experience gained with a simulated environment; Dr. Brooks was invited to discuss

his significant experience with building real robot devices; and Dr. Hayes-Roth was asked to

speak about her experience with the application of large knowledge-based systems to prac-

tical problems in monitoring and control. We felt that these three individuals represented

an interesting range of applications and possible evaluation metrics. In this paper we do

not attempt to provide a summary of the talks, but instead simply reproduce the speakers'

slides (with permission) on the following pages.

Speakers and Topics

Rod Brooks

Bc'nchmarks and Metrics for Mobile Agents

Martha Pollack

Tunable Benchm,:rks for Agent Evaluation

Barbara Hayes-Roth

Inte_lligent Monitoring: Environment, Behavior, Metrics
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Benchmarks and Metrics for Mobile Agents

Rod Brooks

1VIassachusetts Institute of Technology

545 Technology Square

Cambridge, MA 02139

36



Mobile Agents

• Enormous Test Space

• Many Benchmarking Challenges

• Simulations are Extremely Difficult
(to do well)

• Strawman Tasks & Metrics

• Standards
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Challenges for Benchmarking

What is a task?

• Can't supply a standard canned "sequence" of inputs

• System behavior may be very unstable (within sensor
noise) in a formal sense (not necessarily a bad thing)

• Performance may depend critically on sensor suite,
actuator suite
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Axes of Situation Space

• Indoor/Outdoor/Space Structure

• Static/Dynamic

• Night/Day

• Clear/Rainy-Snowy-Sleety

• World is Engineered/Unengineered

• Map Supplied/Unsupplied
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Simulations

• Are doomed to succeed

(David Miller- who stole it from Takeo Kanade)

• Are generally sensation starved

• Are hard to transition to sensation rich
environments

• Usually make you concentrate on the 'wrong'
problems
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Strawman Tasks

• Navigation - get from A to B
(how specified?)

• Map building (what representation & why?)

• Report on something

• Retrieve something

• Deposit something

• Remain concealed
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Strawman Metrics

• Speed

• Reliability

• Computation Consumption

• Level of Dynamicness handled (??)
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Standards

• Standard computational components

• Allowable sensors

• Standard hardware platform
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Standard Hardware Platform

• Adequate sensors

• Adequate manouverability

• Low cost (everyone needs one)

• Adequate computation/high speed data line
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Tunable Benchmarks for

Agent Evaluation

Martha E. Pollack
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Why Tunable ?

Appropriateness of an agent architecture depends on the
characteristics of: its environment

its intended tasks

Therefore want to investigate correlations between

agent-design choices and environmental factors

(Integration Question)

Example: Tileworld

[Pollack & Ringuette, AAAI90]

Simulated, abstract environment with associated tasks

Simulated robot agent

Both highly parameterized



The Tileworld Environment

####################

# T T T T #

# # 22 T#

# # 2 #

# ##5 T #

# ###ST #

# #5 T a T#

# T #

# T T TT #

# #T#T T #

# T #### #

# # ## T #

# # T T T T #

# # # #

# T # # #

# T ##### #

# ##### #

# # TT #

# T T T#

a = agent

T = tile

# = obstacle

<digits> = hole

4

### # # ## ## ### ### #####

Projection of Real-World Environments

• Robot Delivery

hole appearance = delivery request

hole = delivery destination

tile - message or object to be delivered

agent = robot

grid = hallways

simulator time - real time

• Logistics Planning

• Malfunction Handling

• Load Scheduling
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....... ! I I

Goals of the Tileworld Project

• provide a generic, tunable environment for agent evaluation

• develop clear, simple representations of environmental and
task characteristics

• develop clear, simple representations of agent characteristics
(Study IRMA)

° provide a simple, objective metric for agent performance

• provide tools to facilitate experimentation:

• tuning knobs • multiple-run procedures

• data-collection facilities • data-analysis facilities

6

• ,i i

Tunable Attributes

• dynamism

• unpredictability

• distribution of task difficulty

• distribution of task value

• hard/soft bounds for task completion

•.. tunable by knobs (individuals or
clusters)
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Simple Objective Metric:

[ Score! l[
I Ill

Simple (Single) Goal:

Maximize score. (of. NASA's Tileworld)

Tunable Agent

Why? Minimize implementation noise.

Example." IRMA (Intelligent Resource-Bounded
Machine Architecture)

[Bratman, Israel, Pollack; CIJ, 1988]

Tunable Attributes:
• act/think ratio

• deliberation algorithm
• "threshold function": when to continue

executing a currently active plan and when to
deliberate instead

IIII
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Experimental Analysis

Goal: Specify mapping

from Environment/Task Attributes plus

some Agent Attributes (e.g., act/think ratio)

to Remaining Agent Attributes

Related Systems

Phoenix [Cohen et. al., AI Magazine, 1989]

tightly coupled to firefighting domain

metrics not well-defined

complex!

MICE [Durfee & Montegomery, Wkshp. on DAI, 1989]

focus on inter-agent coordination

NASA's Tileworld

much richer goal structure

specification of tunable parameters and metrics more
difficult

5O



Where next?

• Experimentation !!!

• Environment Extensions:

-- e.g., hostile environment

• Agent Extensions:

I

-- e.g., perceptual reliability

• Experimental Framework Extensions

• Adaption of the methodology to other environments,
e.g., ones without tight time constraints

• Learning/Self-Tuning
I I I

, l i

The Moral:

Benchmarks and metrics can be a useful component of 1|

the research program in AI planning, but they should I1

be multi-dimensional and tunable. , II

51



Intelligent Monitoring:

Environment, Behavior, Metrics

Barbara Hayes-Roth

Stanford

June,

University

1990
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Characteristics of the Environment

Continuous Data

Uncertain/Unreliable Sensor

Faulty Sensors

Data Glut

Need for Situation Assessment

Data Distribution

Multiplicity of Conditions

Diversity of Conditions

Real-Time Constraints

Predictability

Potential Interactions

Underlying Model/Knowledge

Variable Stress

Data

Available
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Characteristics of Behavior

Continuous sensing, computing, acting

Diverse Responses:

Detection, Diagnosis, Action

Prediction, Plan, Course of

Interpretation, Explanation,

Multiple Competing/Complementary Goals

Real-Time Constraints

Resource Bounded

Action

Summarization
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Performance Metrics

Correctness

Timeliness

Responsiveness

Selectivity

Recency

Coherence

Flexibility

Robustness

Scalability

$5



Global Utility

Maintain the overall value of
total behavior within an

acceptable range over time.

Some Examples:

Ul = Sum (Correctness * Importance)

For All Responses within Deadline

U2 = Sum (Value * Importance),

-1 <= Value <= +1

= F(Correctness, Speed)

U3 = If OK Response to Critical

Then (U1 or U2), Else 0

Events
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MONITORING AND DIAGNOSIS OF

SEMICONDUCTOR MANUFACTURING

EQUIPMENT

Dr. Barbara Hayes-Roth
Janet Murdock

Computer Science Department
Stanford University

COLLABORATORS:

Robert Dutton (EE)

Gene Franklin (EE)

P. Khuri-Yakub (EE)

Ntis Nflsson (CS)

Krishna Saraswat (EE)

Edward Steinmueller (Business)

Gio Wiederhold (CS)

Ernest Wood (EE)
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SICU Monitoring

0 0
0 0

Project Leader: Barbara Hayes-Roth

Students: Rich Washington, David Ash

Post-Docs: Noi Hewett, Anne Collinot,

Visitors: Angel Vina

Collaborator: Dr. Adam Seiver, Palo Alto VAMC
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